Interactive Feature selection Algorithm for Emotion recognition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Contemporary stochastic feature selection algorithms for speech-based emotion recognition

In this study a class of Multi-Objective Genetic Algorithms (MOGAs) is proposed to select the most relevant features for the problem of speech-based emotion recognition. The employed evolutionary algorithms are the Strength Pareto Evolutionary Algorithm (or SPEA), the Preference-Inspired CoEvolutionary Algorithm with goal vectors (or PICEA), and the Nondominated Sorting Genetic Algorithm II (or...

متن کامل

Acoustic feature selection for automatic emotion recognition from speech

Emotional expression and understanding are normal instincts of human beings, but automatical emotion recognition from speech without referring any language or linguistic information remains an unclosed problem. The limited size of existing emotional data samples, and the relative higher dimensionality have outstripped many dimensionality reduction and feature selection algorithms. This paper fo...

متن کامل

Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets

Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...

متن کامل

the emotion recognition system based on autoregressive model and sequential forward feature selection of electroencephalogram signals

electroencephalogram (eeg) is one of the useful biological signals to distinguish different brain diseases and mental states. in recent years, detecting different emotional states from biological signals has been merged more attention by researchers and several feature extraction methods and classifiers are suggested to recognize emotions from eeg signals. in this research, we introduce an emot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Korean Institute of Intelligent Systems

سال: 2006

ISSN: 1976-9172

DOI: 10.5391/jkiis.2006.16.6.647